Occlusion mapping tools for point cloud quality assessment in forest laser scanning

Benjamin Brede, Daniel Kükenbrink, Bernhard Höfle, Teja Kattenborn, **Lennart Klinger**, Timo Pitkänen, Arunima Singh, Hannah Weiser

SilviLaser 2023, 5 – 8 Sept 2023, London

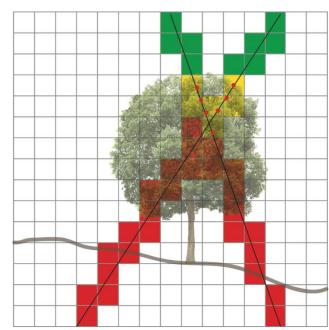
COST Action 3DForEcoTech

WG1: Laser- and Image-based Data Collection

Task: Point cloud quality framework

Motivation: Why Occlusion Mapping?

- Occlusion → incomplete point clouds
- Reduced accuracy/ reliability of derived metrics
- Occlusion often identified as a limitation
- Rarely quantified
- No standardized workflow/ tool available (yet)
- Occlusion mapping for quality assessment of data



Ray-tracing

- Required information:
 - o Beam origin
 - Reflection points
- Generalization through voxelization
- Occlusion as relative value:

$$Occlusion \ rate = \frac{nOcclusion}{nMiss + nHit + nOcclusion}$$

Kükenbrink et al. (2015), SilviLaser 2015, La Grande Motte, France

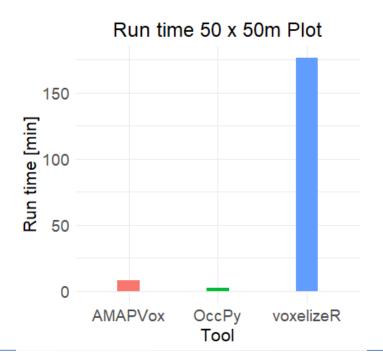
Tools

	AMAPVox	ОссРу	voxelizeR
Reference/ Developer	Vincent et al. (2017)	Daniel Kükenbrink	Benjamin Brede
Developed for Occlusion Mapping	No	Yes	Yes
Programming Language	R & Java	Python & C++	R
Supported Operating Systems	Linux-based, Mac OS X, Windows	Linux-based, Mac OS X, Windows	Optimized for Linux- based, runs on Windows
Multi-core Processing	Yes	No / Not yet	Yes (Linux)
Graphical User Interface	Yes	No	No
Additional plotting software required	No	Yes (e.g., VisIt)	Yes (e.g., QGIS)
3D Plots	Yes	Yes	No
Output File Format	VoxelSpace (.vox)	Numpy arrays (.npy)	GeoTIFFS (.tif)
Considering Beam Size	Yes	No	No
Height Normalization	Yes	Under development	Yes
LAD relevant Metrics	Yes	Under development	Yes

Benchmarking: Data

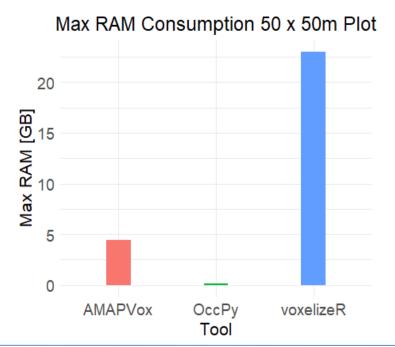
- o TLS data
 - Faro Focus S120
 - Leica BLK 360
- MLS data
 - GeoSLAM ZebRevo
 - GeoSLAM ZebHorizon
- UAVLS data
 - RIEGL miniVUX2
 - RIEGL miniVUX3
- Voxel sizes: 2m, 1m, 0.5m, 0.1m

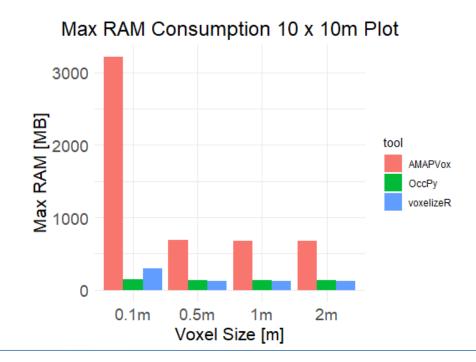
- Analysed area sizes:
 - o 50 x 50 m²
 - \circ 10 × 10 m²
- Point densities (UAVLS):
 - 1717.37 points per m²
 - Reduced by factor 1000
- Forest type: Beech forest
 - Kükenbrink et al. (2022) (https://doi.org/10.1016/j.jag.20 22.102999)
 - Dataset freely available Kükenbrink & Marty (2023) (https://www.doi.org/10.16904/e nvidat.383)



Benchmarking: Run Time

UAVLS Data

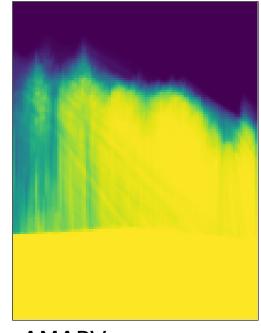


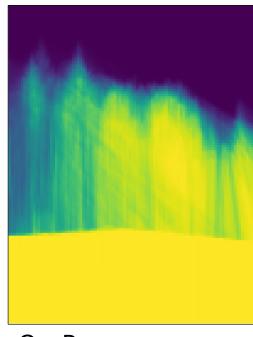


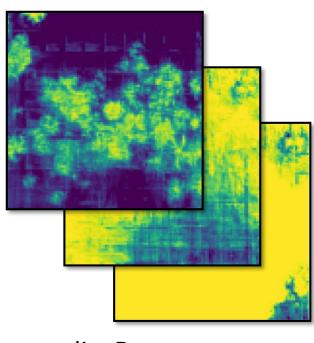
Benchmarking: RAM Consumption

UAVLS Data

Benchmarking: User-friendliness


	AMAPVox	ОссРу	voxelizeR
Pros	Easy installationGUINo additional software required	 Good documentation Easy to use control script 	 Easy installation Good documentation of functions Variety of functions
Cons	 Not developed for occlusion mapping Processing in multiple steps Partly black box 	More complicated installationSetting input parameters in script	 Setting input parameters in script





Example Outputs

AMAPVox

OccPy

voxelizeR

Considerations and Outlook

- Saving trajectory files or scan positions
- Choosing the appropriate voxel size
- Considering available processing capacities

- Testing scalability with bigger extents
- Writing a perspective paper
- Finetuning OccPy and voxelizeR

References

Brede, B., Bartholomeus, H. M., Barbier, N., Pimont, F., Vincent, G., & Herold, M. (2022). Peering through the thicket: Effects of UAV LiDAR scanner settings and flight planning on canopy volume discovery. *International Journal of Applied Earth Observation and Geoinformation*, 114, 103056.

Kükenbrink, D., Marty, M. (2023). Ramerenwald Close Range Remote Sensing Benchmark. EnviDat. https://www.doi.org/10.16904/envidat.383.

Kükenbrink, D., Marty, M., Bösch, R., & Ginzler, C. (2022). Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest. *International Journal of Applied Earth Observation and Geoinformation*, *113*, 102999.

Vincent, G., Antin, C., Laurans, M., Heurtebize, J., Durrieu, S., Lavalley, C., & Dauzat, J. (2017). Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor. *Remote Sensing of Environment*, 198, 254-266.

Acknowledgements

This contribution is based upon work from COST Action 3DForEcoTech, CA20118, supported by COST (European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with peers. This boosts their research, career and innovation. www.cost.eu

LEIPZIG

Funded by the European Union

Difference in Occlusion Calculation

AMAPVox	OccPy / voxelizeR	
Considering beam size (bs)	NOT considering beam size → Rays assumed to be infinitely small	
$Occlusion\ rate = \frac{bsOcclusion}{bsMiss + bsHit + bsOcclusion}$	$Occlusion \ rate = \frac{nOcclusion}{nMiss + nHit + nOcclusion}$	
→ Using beam size of pulses	→ Using number of pulses	
Increasing distance to scanner → increasing beam size → Increasing impact on occlusion rate value	Same impact of all pulses regardless of distance to the scanner	

